Revolutionize Your Data Pipelines - 5 Best Practices!

Опубликовано: 28 Июль 2024
на канале: Aleksi Partanen Tech
790
43

🔥 Ace Your Certification Exams – Free Practice Questions!
🚀 Get ahead with free practice questions for certification exams
👉 https://certiace.com/

☕ Enjoying the Content? Support the Channel!
Buy me a coffee and keep the knowledge flowing!
💖 https://buymeacoffee.com/aleksipartan...

👨‍💼 Follow Me on LinkedIn!
🔗   / aleksi-partanen  

📂 Access Learning Materials (Files, Code, etc.)
💾 Download helpful resources here:
🔗 https://drive.google.com/drive/folder...

🎓 More of My Content:
🎥    • DP-700 Microsoft Certified: Fabric Da...  
🎥    • Microsoft Fabric Data Engineering  
🎥    • Microsoft Fabric Tutorials  
🎥    • Learn Azure Data Factory in 2025 - Fu...  
🎥    • Learn Microsoft Fabric Data Pipelines...  
🎥    • Learn Microsoft Fabric Notebooks in 2...  

🔗 All the Videos:
   / @aleksipartanentech  


5 Essential Best Practices for Building Data Pipelines in Microsoft Fabric
In this video, Aleksi shares five crucial best practices for creating robust, efficient, and production-ready data pipelines in Microsoft Fabric. These practices also apply to Azure Data Factory and Synapse Analytics, helping you elevate your data engineering skills.

What You’ll Learn:
🔷 Why you should configure retry functionality for pipeline activities
🔷 How to set appropriate timeout values for activities to prevent unnecessary delays
🔷 Importance of pipeline concurrency settings to avoid parallel execution issues
🔷 How to utilize iterative logic like For Each activity to simplify pipeline design
🔷 The significance of keeping pipelines simple and leveraging complementary tools for complex logic

Key Takeaways:
✨ Build more robust pipelines with retry and timeout settings
✨ Avoid parallel execution pitfalls by managing concurrency settings
✨ Simplify development using iterative logic and dynamic configurations
✨ Keep pipeline design clean and minimal for better maintainability

Related Hashtags:
#MicrosoftFabric #DataPipelines #DataEngineering #AzureDataFactory #ETLBestPractices