Multilabel and Multioutput Classification -Machine Learning # 6

Опубликовано: 01 Июль 2020
на канале: Ahmad Bazzi
20,791
1.2k

☕️ Buy me a coffee: https://paypal.me/donationlink240
🙏🏻 Support me on Patreon:   / ahmadbazzi  

📚About
This lecture simply talks about Multilabel and Multioutput Classification. The lecture also shows how to get the job done on Python and with the help of sklearn.

⏲Outline⏲
00:00 Introduction
01:03 Multilabel Classification
05:34 Multioutput Classification

🔴 Subscribe for more videos on Machine Learning and Python.
👍 Smash that like button, in case you find this tutorial useful.
👁‍🗨 Speak up and comment, I am all ears.
============================================================
Lecture 1: Introduction    • Introduction - Machine Learning # 1  
Lecture 2: Binary Classification & SGD Classifier    • Stochastic Gradient Descent Classifie...  
Lecture 3: Performance Measures    • Performance Measures - Machine Learni...  
Lecture 4: Multiclass classification & Cross Validation    • Multiclass classification & Cross Val...  
Lecture 5: Gradient Descent    • Gradient Descent - Machine Learning # 5  

============================================================

Instructor: Dr. Ahmad Bazzi
IG:   / drahmadbazzi  
Browser: https://www.google.com/chrome/

============================================================
Credits:

Google
https://www.google.com/

Google Photos
https://www.google.com/photos/about/

TensorFlow
https://www.tensorflow.org/

scikit-learn
https://scikit-learn.org/stable/

Numpy
https://numpy.org/

Microsoft OneNote
https://www.onenote.com/signin?wdorig...

Python
https://www.python.org/


============================================================


References:
[1] Géron, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media, 2019.
https://www.amazon.com/Hands-Machine-...

[2] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.
https://www.amazon.com/Pattern-Recogn...

[3] Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
https://www.amazon.com/Elements-Stati...

[4] Burkov, Andriy. The hundred-page machine learning book. Quebec City, Can.: Andriy Burkov, 2019.
https://www.amazon.com/Hundred-Page-M...

[5] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
https://www.amazon.com/Deep-Learning-...

[6] Chollet, Francois. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.
https://www.amazon.com/Deep-Learning-...

[7] De Prado, Marcos Lopez. Advances in financial machine learning. John Wiley & Sons, 2018.
https://www.amazon.com/Advances-Finan...

[8] Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern classification. John Wiley & Sons, 2012.
https://www.amazon.com/Pattern-Classi...

[9] Lapan, Maxim. Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd, 2018.
https://www.amazon.com/Deep-Reinforce...

[10] Bonaccorso, Giuseppe. Machine Learning Algorithms: Popular algorithms for data science and machine learning. Packt Publishing Ltd, 2018.
https://www.amazon.com/Machine-Learni...

[11] Deisenroth, Marc Peter, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning. Cambridge University Press, 2020.
https://mml-book.github.io/book/mml-b...

[12] Krollner, Bjoern, Bruce J. Vanstone, and Gavin R. Finnie. "Financial time series forecasting with machine learning techniques: a survey." ESANN. 2010.

#MachineLearning #TensorFlow #MachineLearningTutorial