JAX installation with Nvidia CUDA and cudNN support (Fixing most common installation error)

Опубликовано: 05 Июль 2022
на канале: 650 AI Lab
6,516
78

This video is all you need to install JAX with Nvidia CUDA and cudNN support in your Python 3.x installation. This video covers the following:
1. Python 3.9
2. JAX with JAXLib 0.3.14
3. Cuda Toolkit 11.7
4. cuDNN 8.4 Installation
5. Conda Toolkit 11.7
6. Torch, TensorFlow and JAX with GPU Support

GitHub Resources:
https://github.com/prodramp/DeepWorks...

▬▬▬▬▬▬ ⏰ TUTORIAL TIME STAMPS ⏰ ▬▬▬▬▬▬
(00:00) Problem Introduction
(01:32) JAX CUDA+cudNN packages
(02:17) JAX can not find CUDA
(03:55) Most common installation error
(05:45) Clean JAX installation
(06:50) Final Installation validation
(07:38) End Credits

Connect
------------------
Prodramp LLC (@prodramp)
Website - https://prodramp.com
LinkedIn -   / prodramp  
GitHub- https://github.com/prodramp/
AngelList - https://angel.co/company/prodramp
Facebook -   / prodramp  

Content Creator: Avkash Chauhan (@avkashchauhan)
  / avkashchauhan  
  / avkashchauhan  

Tags:
#nvidia #cuda #jax #cnn #ml #lime #aicloud #h2oai #driverlessai #machinelearning #cloud #mlops #model #collaboration #deeplearning #modelserving #modeldeployment #pytorch #datarobot #datahub #streamlit #modeltesting #codeartifact #dataartifact #modelartifact #onnx #aws #kaggle #mapbox #lightgbm #xgboost #dataengineering #pandas #keras #tensorflow #tensorboard #cnn #prodramp #avkashchauhan #LIME #mli #xai #cuda #cuda-nn