This video is all you need to install DLib with Nvidia CUDA and cudNN support in your Python 3.x installation created using Conda. You will also learn fixing the problem specific to following error:
ImportError: /home/avkash/anaconda3/envs/dw39/lib/python3.9/site-packages/zmq/backend/cython/../../../../.././libstdc++.so.6: version `GLIBCXX_3.4.29' not found (required by /home/avkash/.cache/torch_extensions/py39_cu113/fused/fused.so)
This video covers the following:
0. Ubuntu 22.04 with latest Kernel
1. dlib (latest from GitHub)
2. Cuda Toolkit 11.7 and cuDNN 8.4 Install
3. Python 3.9 with Conda
4. Torch, TensorFlow and JAX with GPU Support
GitHub Resources:
https://github.com/prodramp/DeepWorks...
dlib GitHub:
https://github.com/davisking/dlib
▬▬▬▬▬▬ ⏰ TUTORIAL TIME STAMPS ⏰ ▬▬▬▬▬▬
(00:00) Problem Introduction
(02:05) Ubuntu 22.04 Cuda/Intro
(03:51) Cloning dlib from GitHub
(04:24) Building dlib code
(05:17) Checking cuda is used in build
(06:15) Installing dlib in python environment with conda
(07:18) Testing installation
Connect
------------------
Prodramp LLC (@prodramp)
Website - https://prodramp.com
LinkedIn - / prodramp
GitHub- https://github.com/prodramp/
AngelList - https://angel.co/company/prodramp
Facebook - / prodramp
Content Creator: Avkash Chauhan (@avkashchauhan)
/ avkashchauhan
/ avkashchauhan
Tags:
#nvidia #cuda #dlib #cnn #ml #lime #aicloud #h2oai #driverlessai #machinelearning #cloud #mlops #model #collaboration #deeplearning #modelserving #modeldeployment #pytorch #datarobot #datahub #streamlit #modeltesting #codeartifact #dataartifact #modelartifact #onnx #aws #kaggle #mapbox #lightgbm #xgboost #dataengineering #pandas #keras #tensorflow #tensorboard #cnn #prodramp #avkashchauhan #LIME #mli #xai #cuda #cuda-nn